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A parametric study is made of chaotic Rayleigh-Be'nard convection over moderate 
Rayleigh numbers. As a basis for comparison over the Rayleigh number (Ra) range 
we consider mean quantities, r.m.s. fluctuations, Reynolds number, probability 
distributions and power spectra. As a further means of investigating the flow we use 
the Karhunen-Loe've procedure (empirical eigenfunctions, proper orthogonal 
decomposition). Thus, we also examine the variation in eigenfunctions with Ra. This 
in turn provides an analytical basis for describing the manner in which the chaos is 
enriched both temporarily and spatially as Ra increases. As Ra decreases, the 
significant mode count decreases but, in addition, the eigenfunctions tend more 
nearly to the eigenfunctions of linearized theory. As part of this parametric study 
a variety of scaling properties are investigated. For example it is found that the 
empirical eigenfunctions themselves show a simple scaling in Ra. 

1. Introduction 
Rayleigh-Be'nard convection is of fundamental importance to fluid mechanics not 

only because of applications to natural phenomena but also because it is a basic 
model system which incorporates dissipation and nonlinearity and which exhibits 
turbulence. In this paper and that which follows (Sirovich & Deane 1990, hereinafter 
referred to as 11) we explore a range of flows in which the Rayleigh number (Ra) 
varies. This section serves as an introduction to both parts. 

Rayleigh-Be'nard convection has shown fresh vitality partly as a result of new 
ideas associated with what might be called the chaotic dynamics of dissipative 
systems. In brief, this collection of ideas which suggest routes to chaos (Ruelle & 
Takens 1971) other than the classical picture (Landau 1944), introduces the idea that 
there are certain universal features (Feigenbaum 1978) and demonstrates that small 
dynamical systems, corresponding to relatively smooth spatial structures, can lead 
to chaotic behaviour (Lorenz 1963). An additional concept within this framework, 
and one which we shall dwell on, is the idea that dissipative systems possess 
relatively low-dimensional attractors. Thus, although the representational phase 
space for the Boussinesq equations of turbulent thermal convection is infinite- 
dimensional, the trajectory of the system is drawn into a finite-dimensional 
attracting set as a result of dissipation. In the case of two-dimensional convection 
this has been proven by Constantin et al. (1985) and Foiatj, Manley & Temam (1987). 
For relatively low values of Ra, which is the active control parameter for 
Rayleigh-Be'nard convection, this attracting set can be a point (zero dimension), a 
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ring (one dimension), or a two-torus (two dimensions) depending on whether the 
motion is steady, single-frequency , or two-frequency. A comprehensive review is to 
be found in the article by Busse (1985). 

At higher values of the control parameter for this and similar dissipative systems, 
the belief is the trajectory is drawn into a non-simple attracting set of relatively low 
dimension. Once on this attracting set, nearby trajectories separate exponentially 
fast - which makes the attractor strange. For Rayleigh-BBnard convection there is 
experimental confirmation for this view (Malraison et al. 1983). It is further thought 
that the dimension of the attractor increases gradually with increasing Ra. More 
generally this is held to be the case for other closed systems, e.g. Taylor-Couette flow 
(Fenstcrmacher, Swinney & Gollub 1979). By contrast open systems such as 
boundary layers, Poiseuille flow and so forth show a dramatic increase in attractor 
dimension once the system is beyond the critical value. Keefe & Moin (1987) have 
already presented evidence for this in the case of channel flow. 

The present investigation originates in a recent, thorough numerical study of low- 
aspect-ratio Rayleigh-BQnard convection performed a t  seventy times the critical 
Rayleigh number, 70Rac (Sirovich, Maxey & Tarman 1989b; Tarman 1989). It was 
found that a t  that value of Ra, the turbulent motion was sluggish and probably 
better termed chaos. The basic motion of the fluid was found to be counter-rotating 
rolls raising heated fluid and lowering cooled fluid. At seemingly random times the 
axes of the cells themselves rotated by &in in the horizontal. Although many modes 
participate in the total flow, roughly 40 YO of the energy of the motion was accounted 
for by the simple cellular patterns just described. Moreover, although the numerical 
simulation required a phase space of roughly lo5 dimensions, a reasonably accurate 
picture describing more than 90 YO of the energy was possible in terms of a subspace 
of roughly 320 dimensions. 

One of the goals of the present investigation (dealt with in 11) is to accurately 
estimate the dimension of the attractor of this flow. In  addition, we shall also 
describe the change in the nature of the flow and in particular the attractor 
dimension as the Rayleigh number is varied from its near critical value to  the 
maximum considered by us, 70Rac. The basis for our dimension estimates is the 
Kaplan-Yorke (1979) formula, which in turn depends on the calculation of the 
Lyapunov spectrum. As is well known (Shimada & Nagashima 1979; Benettin et al. 
1980 ; Wolf et ,aZ. 1985) such calculations are computationally intensive. (Each 
computation of a Lyapunov experiment requires the equivalent of an additional full 
simulation.) For this reason we adopt (and justify the use of) a coarse-grained version 
of the direct simulation. In  this connection mention should be made of the coarse- 
grain calculations of Gilbert & Kleiser (1987) for the channel problem. Some of our 
arguments may shed light on the almost unreasonable success of their computations. 
In addition we also introduce some approximate methods for the determination of 
the Lyapunov dimension without fully determining the Lyapunov spectrum. 

In the already mentioned earlier treatment, the Karhunen-LoQve (K-L) procedure 
(Ash & Gardner 1975; Lumley 1970) played an essential role in the analysis of the 
turbulent flow. This method, which was introduced into turbulence theory by 
Lumley in a pioneering paper (Lumley 1967), has been important in a variety of 
problems (Moin 1984 ; Moin & Moser 1989 ; Sirovich & Rodriguez 1987 ; Aubry et al. 
1988; Glauser, Lieb & George 1987). For a history of this method see Preisendorfer 
(1988). Within the framework of second-order statistics i t  can be shown that the 
K-L method gives an optimally compact description of the turbulent flow. It is 
therefore of interest to see how the intrinsic dimension of the K-L description 
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compares with the Lyapunov dimension (which in a sense gives the ideal value). This 
we do over a range of Rayleigh numbers. In this light we also compare the K-L 
eigenfunctions as Ra is varied and observe mode crossing. 

In the first of the papers we place emphasis on scaling properties of flows for which 
RalRa, < O(102). The recent work by the Chicago group (Castaing et al. 1989) 
underscores the value of such a treatment. Their main concern was for high-Ra flows 
and thus our results serves as a contrast to theirs. However, some of the universal 
features and scalings which we present may also carry over to the high-Ra limit. 

2. Formulation and numerical procedures 

normalization is given by (Chandrasekhar 1961 ; Drazin & Reid 1981) 
The Boussinesq approximation to the Navier-Stokes equations in the standard 

au 
- = - u -  Vu-Vp+RaPre,T+PrV2u, ( 1 4  at 

aT - = - (U * V )  T+ w+V2T, 
at 

where u = (u,  v, w) is the velocity, p the pressure, T the departure of the temperature 
from its (linear) conduction profile, and ez is a unit vector in the vertical z-direction. 
All physical quantities have been made dimensionless using the characteristic height 
of the layer, H ,  and the thermal diffusivity K. The dimensionless parameters of the 
problem are the Rayleigh and Prandtl numbers 

gaATH3 
Ra = 

KV 

where g is the acceleration due to gravity, a is the coefficient of thermal expansion, 
AT the imposed adverse temperature difference and v the kinematic viscosity. 

The case of stress-free boundary conditions 

will be considered. Also, the flow will be taken to be L-periodic in the horizontal 
directions x and y with aspect ratio LIH = 2 4 2 ,  corresponding to the wavelength of 
maximum linear instability. For this case the critical Rayleigh number is 

(4) 
27n4 

4 
Ra, = - = 657.4. 

In  all calculations to be discussed, the Prandtl number is fixed at Pr = 0.72. For 
describing later results it is useful to define the relative Rayleigh number 

r = Ra/Ra,. ( 5 )  
Following procedures described in Tarman (1989) these equations were integrated 

by means of a pseudospectral code based on that of Herring & Wyngaard (1987). The 
same code is used here for investigating the flow fields and the reader is referred to 
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the references for further details. Here we simply note that Fourier collocation is 
used with de-aliasing based on the 2/3 rule.- The time stepping is by a leap-frog 
scheme for the nonlinear terms and a Crank-Nicholson scheme is used for the 
diffusion terms. A different version of the code using an Adams-Bashforth scheme for 
the time stepping yielded nearly indistinguishable results for a (32)s simulation at 
r = 70. In all runs the time stepping was small enough to satisfy the Courant- 
Friedrichs-Lewy condition. 

3. Eigenfunction analysis 
As in Sirovich et al. (1989b) & Tarman (1989) we use the K-L procedure as a basis 

for the analysis of chaotic flows. Lumley introduced this method into turbulence 
theory and it has been widely used since. As originally proposed by Lumley the 
K-L method was intended as a rational procedure for the extraction of coherent 
structures. Lumley’s work may be regarded as the analytical counterpart of the early 
work by Theodorsen (1952) and Townsend (1956), which laid the foundation for the 
concept of coherent structures. In the present investigation we view the K-L 
procedure as an efficient method for the decomposition and analysis of a chaotic flow. 
For reasons of continuity and completeness we briefly outline the basic ideas behind 
this method within the framework of Rayleigh-BBnard convection. 

We shall assume that the convective flow is turbulent and the system has been aged 
so that its trajectory lies in the attracting set. Ensemble averages will be denoted by 
brackets (). For example, from symmetry i t  follows that the mean velocity 
vanishes, 

(u> = 0, (6) 

and that the mean temperature is independent of x and y, 

(T) = T(2).  (7) 
The departure from the mean temperature, T, will be denoted by the fluctuation 8, 

T = P+e. (8) 

u = (u ,8 )  (9) 

It is convenient to define the state vector 

for the fluctuation having zero mean, ( u )  = 0. Since the turbulent flow is time 
stationary there exists a mean energy 

E = ((0, v ) )  = (I“? V d X ,  t )  v,(x, t )  dx , ) (10) 

where V is the volume of the fundamental Rayleigh-BBnard cell, of height H and 
square planform, L x L. Equation (10) implicitly defines the inner product that will 
be used in the following. 

The K-L procedure now follows by posing the following extremal problem : what 
is the most likely instantaneous flow, say $(x), in the sense that 

= ((6 ul2) (11) 

is a maximum, with $ subject to condition (10) ? To obtain the answer we form the 
covariance 

K,,(x, x’) = (v,(x, 4 v,(x’, t ) )  (12) 
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and then seek the eigenfunctions, # k ( ~ ) ,  such that 

The principal eigenfunction of (13) fulfils the requirements of the problem posed 
above. All subsequent eigenfunctions satisfy the same extremal condition, (1  l ) ,  with 
appropriate side conditions of orthogonality to the already determined 4. 

It can be shown (Lumley 1970, 1981; Sirovich 1987a) that K is hermitian, non- 
negative and square integrable (on physical grounds). From this it follows that the 
empirical eigenfunctions {#k}  form a complete orthonormal set, 

(#k> 9,) = ‘ k l .  

Therefore the base flow, v ,  can be expanded in this set 

v = X a n # n ,  

with an = ( # n y  v ) .  
The coefficients {a,} form a statistically orthogonal set, 

<an a m >  = An ’nm. 

Each eigenvalue, A,, can be interpreted as measuring the mean energy of the 
projected flow energy onto the corresponding eigenspace. In addition it follows that 
the total mean energy is given by 

E = CIA,. (18) 
n 

As a result of the homogeneity of the problem in the horizontal directions it follows 
that the empirical eigenfunctions are sinusoidal in x and y (Grenander & Szego 1958 ; 
Lumley 1970; Sirovich 1987b). We can therefore write a typical eigenfunction as 

#g) = @g)(z) e i2x (kz+ l~ )  (19) 

where (20) 

and K(k, 1 ;  z, 2’) denotes the Fourier transform of K in the x and y variables. In the 
following k and 1 will be referred to as wavenumbers and n as the (vertical) quantum 
number. 

K(k, 1 ;  z,  z’) @E)(z’) dz’ = A E )  @g)(z), 

4. Numerical results 
A large number of simulations were required because of the aims of this 

investigation. It is our intention to present a parametric study as the Rayleigh 
number is varied over a range of values. As we shall see in 11, the calculation of 
Lyapunov dimension requires the determination of a relatively large number of 
Lyapunov exponents. Each determination of a Lyapunov exponent in turn requires 
the equivalent of a full simulation. For these reasons we have used a coarser 
grid than found in the cited studies. In those, a grid of (32)3 points were considered. 
We also consider 32 points in the vertical but reduce the horizontal grid to (12)2. In 
the remainder of this section we discuss the basis of this choice and justify it by 
comparing noteworthy measures of the flow according to the two grid spacings. The 
use of coarse-grained grids for channel flow has been successfully exploited by Gilbert 
& Kleiser (1987) and the following deliberations may be relevant to their work. 

The most chaotic Rayleigh-BBnard flow that will be considered here is one for 
which 

(21 1 Ra = 70Ra, z 46000. 
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FIGURE 1. (a) The mean temperature, p, and (b) the r.m.s. of vertical velocity, (w2)k The solid line 
indicates the (32)3 calculation and the dashed line the ( 12)2 x 32 one. 

(32)3 32 x (12)' 

Nu 5.90 6.12 
Re, 19.5 19.3 
8, 0.29 0.30 

TABLE 1. Nusselt number, Taylor microscale Reynolds number and temperature skewness for 
the fine-grained and coarse-grained simulations 

This is the value used by Herring & Wyngaard in their convection calculation and 
later by Sirovich et al. (1989b). In  table 1 we compare the Nusselt number, and box- 
averaged values of the Taylor-microscale Reynolds number, Re,, and temperature 
skewness, S, (Monin & Yaglom 1975) where 

for the coarse- and fme-grain simulations. The agreement is extremely good except 
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(3V3 ( 12)a x 32 

Mode A Deg. Mode A Deg. 

1 (0, 1, 1) 75.137 4 (0, 1 ,  1 )  75.450 4 
2 ( 1 ,  1, 1 )  16.242 4 (1,  1, 1) 16.863 4 
3 (0, 1,  2) 7.7384 4 (0, 1 ,  2) 8.5370 4 
4 (0, 0, 1) 6.1013 2 (0, 0, 1) 5.7422 2 

6 (1,  2, 1) 3.4338 8 (1,  2, 1) 3.1617 8 
7 (0, 1, 3) 3.4146 4 (0, 1, 3) 3.1615 4 
8 (1,  1 ,  2) 2.5981 4 (1,  1, 2) 2.8215 4 
9 (0, 2, 2) 2.5263 4 (0, 0, 3) 2.2859 1 

10 (0, 3, 1) 2.2208 4 (0, 1, 4) 2.1137 4 
11  (1 ,  1, 3) 2.0764 4 (0, 2, 2) 2.0537 4 
12 (0, 1,  4) 1.8146 4 (0, 3, 2) 2.0228 4 
13 (0, 0, 3) 1.5815 1 (1,  1, 3) 1.9320 4 
14 (0, 2, 3) 1.5491 4 (2, 2, 1 )  1.4150 4 

TABLE 2. Eigenvalues ( A )  of the Karhunen-Lo6ve modes for the fine-grained and coarse-grained 
simulations and their degeneracies (deg) 

5 (0, 2, 1) 5.1559 4 (0, 2, 1) 4.4639 4 

for the Nusselt number, for which there is a 4% error. Note that Nu is higher for the 
coarse-grained simulation since the truncation of small scales effectively energizes 
the flow. 

The Nusselt number defines a boundary-layer thickness through the relation 

H NU =%. (23) 

From this and the values of Nu in table 1 we observe that between two and three grid 
points lie in the boundary layer. Experience has shown that this is more than 
adequate. The basis for the reduction in horizontal grid points comes from the 
observation made in Sirovich et al. (1989 b )  that wavenumbers such that k 3 5 do not 
occur until the 260th eigenfunction mode. In fact the average energy of the most 
energetic k = 5 mode is less than 0.04% of the total energy. Further justification 
comes from a posteriori comparisons which are now considered. 

In figure 1, we present a comparison of the mean temperature T, and the r.m.9. 
value of the vertical velocity component, w. As can be seen the agreement is 
excellent; the percent error based on total variation being 0.17% and 1.9% 
respectively. A finer assessment of the agreement can be obtained by comparing the 
empirical eigenfunction decomposition in each instance. We have performed the 
decomposition using 800 realizations and have used symmetries to extend the data 
set in the manner described in Sirovich (1987a, b) .  Table 2 contains a comparison of 
the results for the first fourteen invariant subspaces in each of the two cases. If we 
refer back to (20), the first two entries of column two refer to the wavenumber (k, 
I )  and the third to the vertical quantum number, n. The unnormalized eigenvalues 
appear in column three. The fourth column indicates the degeneracy (corresponding 
to symmetries of the eigenfunctions) of the subspace. As can be seen the principal 
eigenvalues agree quite well with each other. Departures become more significant 
(none worse than about 10%) as we go down the list, but no systematic trend is 
present. In fact even the ordering is maintained until the ninth invariant subspace, 
when a mode crossing takes place. Not all of these effects can be attributed to the 
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FIQURE 2. (a) The isotherms and (b) the streamlines corresponding to the principal eigenfunction 
(0, 1 ,  1). View is along the z-axis. (e) The isotherms and (d )  the streamlines corresponding to the 
second eigenfunction ( 1 , 1 , 1 ) .  View is along the planform diagonal. 

difference of grids being used. A similar variation, at fixed grid conditions, is also 
observed under changes in the length of data records. 

Figure 2 contains representative eigenfunctions of the first two invariant 
subspaces, q5g) and q5i:) (see (19)), shown by plotting the corresponding streamlines 
and isotherms. The first eigenfunction represents a pair of rolls aligned along the x- 
or y-axis while the second is made of four rolls aligned along a diagonal of the square 

planform. The corresponding fine-grain calculation (Sirovich et al. 1989 b )  shows 
virtually identical structure. The r.m.s. differences between the two sets of 
calculations are small, being less than 0.5 % in the velocity eigenfunctions, and about 
2 % in the temperature eigenfunction. This robustness in the functional form holds 
well down into the stack of eigenfunctions. 

5. Rayleigh-number scaling 
In as much as the coarse-grained calculation a t  r = 70 is adequately resolved, we 

are also able to consider r < 70, in which case the resolution improves with decreasing 
r .  We have made a detailed investigation a t  five moderate values of Rayleigh number 
for which we find chaotic behaviour: 

r = 5,15,30,50,70, (24) 



A computational study of Rayleigh-Be'nard convection. Part 1 239 

I.. . 

-~~ 0 

-4  

0 0.2 0.4 0.6 0.8 

30 - 
- 

-4 I I I I -I 
0 0.2 0.4 0.6 0.8 

0 0.2 0.4 0.6 0.8 - 
70 - 

0 0.2 0.4 0.6 0.8 1 .o 
W / B  

FIQURE 3. Horizontally averaged temporal power spectra of the vertical velocity in the midplane 
z = i at the indicated value of Rayleigh number. The frequency has been scaled according to 
r-f x 10-2. 

where the lower value is chosen by the appearance of irregular behaviour and the 
upper value by the adequacy of resolution. In figure 3 we show the power spectra of 
the vertical velocity, w, recorded at  tbe midplane for r = 5-70. The spectra have been 
averaged over sixteen points in the mid-plane. A t  r = 5 we have what might be 
termed noisy periodicity (Lorenz 1980), while a t  r = 70 the spectrum has the 
broadband features associated with chaos. At  the intermediate values of r the spectra 
appear similar to that for r = 70. The transition in character, as the Rayleigh number 
is increased, can also be observed in the change in autocorrelation. This is discussed 
in 11. Here we simply note that, as Ra increases, the periodic component rapidly 
decreases in strength, but is still present a t  r = 70, leading to a decaying but 
oscillatory autocorrelation over the entire range of r.  

In plotting the five power spectra of figure 3, the frequency has been normalized 
with repect to 

we show in I1 that this is the appropriate frequency scaling. As is clear from figure 
3 the power spectrum appears to take on a universal form in the shape of an 
exponential at the higher values of Ra. The spectra at  r = 50 and r = 70 virtually lie 
on one another. 

5.1. Probability distribution functions 
The Chicago group (Castaing et al. 1989) have shown that one of the distinguishing 
features of soft and hard turbulence is the respective presence of either a Gaussian or 
an exponential distribution for temperature fluctuations. It is of interest to see the 

2 cc ri;  (25) 
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FIGURE 4. The probability density functions of (a) the vertical velocity wand ( b )  the temperature, 
both in the midplane for different Rayleigh numbers. Each p.d.f. has unit variance. The direction 
of the arrow indicates increasing values of r .  

passage to the normal distribution as Ra increases in the limited range being 
considered here. This is shown in figure 4. Figure 4(a)  shows the distribution of 
vertical velocity fluctuations and figure 4 (b)  the distribution of temperature 
fluctuations. Both of these distributions have been calculated at the midplane. (Each 
p.d.f. has been normalized so that there is unitary variance.) Both the temperature 
and velocity p.d.f.s are seen to be Gaussian a t  the higher values of r .  At the lower 
values of r the p.d.f.s are quite flat and in fact the velocity p.d.f. is seen to be bimodal 
a t  r = 5. The flat p.d.f.s at lower values of r appear because the motion is dominated 
by large rolling modes. This will be discussed further later. 
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FIQURE 5. Nusselt number versus Rayleigh number. The solid lines have slopes 1/4 and 1/3 and 
the dashed line indicates that the Nusselt number is unity at r = 1 .  The diamonds are at calculated 
values of Nu with (12)a x 32 resolution while the triangle is with (32)8 resolution. Note that for 
r = 70 there is discernable error in Nu. 

r = 5  15 30 50 70 

Nu 2.91 3.94 4.69 5.59 6.12 
Re, 8.5098 12.620 14.487 18.407 19.329 
8, 0.198 0.226 0.254 0.289 0.297 

TABLE 3. Nusselt number, Taylor microscale Reynolds number and temperature skewness for 
simulations at the indicated Rayleigh numbers 

5.2. Nusselt number 
Table 3 contains the results at the five values of r for the Nusselt number, Reynolds 
number and skewness. The weakly turbulent nature of the flow is apparent from the 
low values of Re, and the skewness. The Re, data have a power-law behaviour of the 
form Re, - ro*28. 

Figure 5 contains a plot of the Nusselt number as function of Rayleigh number. A 
data point from the he-grained calculation, a t  r = 70, is indicated as a triangle. The 
coarse-grained data at smaller values of T ,  together with the fine-grained data point 
appear to be well fitted by a straight line of slope 0.25, i.e. 

Nu cc (&r 
for the range given in (24). Although the difference between the h e -  and coarse- 
grained calculations is small, roughly 4% at r = 70, the difference is discernible in 
figure 5.  The overestimate in Nu by the coarse-grain treatment is understandable 
since diminished resolution results in diminished dissipation. Hence the flow is 
overenergetic, which results in greater heat transport due to convection. 

Equation (26) should be contrasted with the often mentioned value of 

N U K  - ,  (Ey 
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which is also shown in the figure. The quarter-power law, (26), has been obtained 
theoretically by Pillow ( 1952). Pillow's argument is basically a two-dimensional one 
which rests on heat transfer computed by cellular convection modes based on the 
eigenfunctions of linear theory. It leads to an increasing exponent in (26) or (27) 
(Malkus 1954a, b ;  Catton 1966) and hence more efficient heat transfer as Ra 
increases, so more modes need to be included. The same argument applies here. 
Now however the modes are the empirical eigenfunctions which are more truly 
representative of the nonlinear flow. As we indicate later the overwhelming amount 
of energy of motion in all of the simulations is a two-dimensional cellular motion - 
but one that orients itself along the x- and y-axes at random times. The argument is 
still valid since we have computed the switching time of the eddy and it is at least 
an order of magnitude larger than the eddy turnover time. The dominant mode is the 
(0,1,1) mode and may be thought of as the wind in the problem in the same spirit 
as the Chicago group experiment (however, there is no indication of plume structures 
being generated for the limited range of Ra investigated here). There is therefore a 
sound basis for applying Pillow's argument to  the present case and hence for the 
quarter-power law, (26)' to be applicable here. The fact that Pillow considers no-slip 
boundary conditions and ours are slip boundaries should be of little consequence 
since the primary mechanism for the heat transport in this picture is the cellular 
motion in the main body of the flow. 

Another theoretical treatment leading to a power law is due to Catton (1966) who 
obtained 

His treatment is based on a count of the linear modes which become unstable as the 
Rayleigh number is incremented. This treatment was based on the earlier suggestion 
by Malkus. Laboratory confirmation of such power laws have also been obtained. 
Garon & Goldstein (1973) report an exponent of 0.29 and Threlfall (1975) found an 
exponent of 0.28. More recently, the Chicago group have found the one-third 
exponent, in a soft turbulence regime, and an exponent of 5 in the hard turbulence 
regime, the regimes being distinguished by the nature of probability distributions. 

There are wide differences in conditions amongst the various studies we have been 
discussing and just a few points will be mentioned. Unlike the cited references, our 
boundary condition are of slip type, but as mentioned above this is not felt to be 
important if we consider Nu versus r .  Our simulations cover a relatively narrow band 
of Rayleigh numbers in what must be regarded as the low-turbulence range. In  fact 
as a result of the relatively low value of r ,  significant cross-talk between the flow at  
the two bounding planes should be expected. However, the standard argument for 
obtaining tlhe + slope is based on the premise that the plate separation should become 
unbounded (Turner 1973) and hence that the cross-talk diminish as Ra increases. 

5.3. Scalings 
In  our parametric study we find that temperatures and velocities scale quite well 
with the scalings introduced in Sirovich et al. (1989 b).  A characteristic velocity in the 
boundary layer is 

u, = (2gaAT6)f, 

which in the standard normalization with respect to the thermal diffusion is 
(29) 
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FIQURE 6. (a) The mean temperature and (b) the r.m.9. of the vertical velocity 

at various values of r .  

A characteristic temperature is obtained by demanding that the turbulent heat flux 
in the centre of the cell be equal to that due to diffusion at  the boundary: 

which leads to 

It is of interest to observe the change in the mean temperature profile T and (w2); 
as the Rayleigh number is varied, particularly with regard to the scalings. This is 
shown in figure 6 where they have been scaled according to (30) and (32). At the 
higher values of the Rayleigh number the scalings appear to hold very well, being 
nearly indistinguishable in the case of the velocity profile. Note that the boundary- 
layer thickness scales as in (23), a fact that will be used in the spectral scalings 
presented below. 

6. Flow decomposition 
We now consider the flow in detail by performing the K-L expansion on the 

simulations at  the five Rayleigh numbers, (24). Except for the case r = 70 already 
discussed, we use 300 realizations and use symmetries in all cases to expand the data 
sets. The results are summarized in table 4, which shows the modes, their percent 
energy contribution to the total, and their degeneracy based on their symmetry. 
Several features are worth noting. As the Rayleigh number is decreased the first few 
modes capture an increasingly large share of the energy. In fact at  r = 5 the first 
mode itself captures 65 YO of the energy. In a probabilistic sense, the flow spends 65 % 
of its time executing this motion. The dominance of this at r = 5 also shows in the 
p.d.f. discussed earlier and shown in figure 4, where it is seen that the distribution is 
bimodal. At this low value of r the rolling motion penetrates through the middle of 
the layer where the p.d.f. is measured. This results in an emphasis of the non-zero 
vertical motion. At  higher values of r the smaller scales become more important and 
thus flatten the p.d.f. 
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FIQURE 7. Typical evolution of energy at 7 = 5 (see (16)) of the empirical eigenfunctions. (a)  The 
modes (0,1,1) (solid line) and ( l , O ,  1) (dashed line). ( b )  The modes ( l , l ,  1) (solid line) and ( -  l , l ,  
1 )  (dashed line). The horizontal line in both figures represents the average energy or eigenvalue of 
the mode including degeneracies. Time has been rescaled according to t = t / r f ,  see (25). 
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FIQURE 8. As in figure 7 but for r = 70. 

At the higher end of the table, r = 70,39 YO of the energy resides in this first mode. 
Balachandar, Maxey & Sirovich (1989) and Sirovich, Balachandar & Maxey (19894 
have shown that at  T = 9800 this first mode still contains 25% of the energy. It is 
therefore of interest to think about the asymptotic limit, Ra f 00. From the limited 
data it appears that the energy in this first mode falls to zero with some inverse 
power, Ail  oc r-”. (From the fragmentary information, v m 0.1.) We also note from 
table 4 that while the first three most energetic modes are (0,1, l),  (1,1,1) and 
(0, 1,2) over the range of Ra, there are a number of mode crossings that take place 
down the stack of eigenfunctions - different modes become active as Ra is varied. 
This is particularly true at the lower values of r. 

The spatial structure of a given eigenfunction consists of a horizontal and a 
vertical part. The horizontal part is sinusoidal, (19), and thus does not vary with Ra. 
The vertical part in general simplifies with decreasing Ra in that fewer harmonics 
participate as R a  is decreased. Tarman (1989) describes the spatial structure of a 
large number of modes at r = 70. The spatial structure of two of the most energetic 
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FIQURE 9. (a) The harmonic content of the temperature eigenfunction (0, 1 , l )  for various values of 
r .  (b) The scaling of eigenfunctions with Nusselt number. Shown in the power in the (0,1,1) scaled 
with the Nusselt number as exponent - log (P)”’/lO. 

modes was discussed earlier in $4 (figure 2).  The motion is in the form of rolls and the 
temperature fluctuations take on a double-lobed appearance on either side of a 
convective roll. Other modes have different character. The ( O , O ,  1) mode, for 
example, (table 4) is purely mechanical - no temperature fluctuations occur and the 
motion is confined to z = const. The mode (0,0,3), on the other hand, is purely 
thermal with no associated motion. In general, as the vertical quantum number 
is increased, the number of zero-crossings increase (as seen for example in 
Sturm-Liouville eigenfunctions). 

Once the eigenfunctions have been calculated the flow can be projected onto this 
space and the evolution of the energy in each mode determined. This is shown for the 
first two eigenfunctions in figures 7 and 8 for r = 5 ,  and 70 respectively. Turning our 
attention to the principal mode (0 ,1 ,1 )  (figures 7 a  and 8a)  we observe that at  r = 5 
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most of the energy is maintained in a two-roll cell aligned along the y-axis, the 
corresponding roll along the x-axis gaining little energy for this relatively short 
duration. At r = 70 (and at  r > 5, not shown) on the other hand, the motion is faster 
and the rolls alternate in energy. In the mode ( 1 , 1 , 1 )  (figures 7 b  and 8b) which 
corresponds to four rolls aligned along one diagonal of the square planform, at r = 
5 the rolls along the other diagonal evolve virtually identically. At r = 70 (and at 
r > 5 not shown) there are discernable amplitude variations but the two sets of rolls 
mostly maintain phase. Thus the nature of the flow at r = 5, consisting of rolls which 
remain aligned with one axis for long periods of time, appears characteristically 
different from that at r > 5, where rolls randomly align themselves with the x- and 
y-axis. The observed chaos at  r = 5, which is low-dimensional (see 11), is therefore 
mostly associated with the temporal evolution of the first and second modes and not 
with the spatial structure, which remains fairly well organized. In addition note 
that time has been rescaled in figures 7 and 8 ; the oscillations are also more rapid a t  
large r in unscaled coordinates. The oscillations at  a given r are more rapid for the 
higher modes (modes with lesser energy). 

We close this section by discussing the variations in the eigenfunctions with Ra.  In 
figure 9 ( a )  we plot the spatial power spectrum in the z-direction of the temperature 
portion of the (0, 1, 1)-mode at the five values of r .  As expected the harmonic content 
in the vertical direction decreases with decreasing r ,  and tends to an almost pure 
sinusoid at r = 5.  In  view of the fact that the thermal layer scales with the inverse 
Nusselt number, it would seem reasonable that we plot the spatial power versus 
k /Nu.  If we make use of the near exponential behaviour of the spectrum we obtain 
figure 9 (b). From this it appears that the spectrum is tending to a universal form. In 
view of the limited range of our data base this indication requires further verification. 

7. Discussion 
As the Rayleigh number is decreased, we anticipate that the motion should 

become more sluggish, and that fewer modes should be implicated in the motion. The 
latter is confirmed in table 4, where we have seen that an increasing fraction of 
energy is contained in the first few modes as r is decreased. The question of dimension 
will be discussed in some detail in 11. For the moment, however, it goes almost 
without saying that the dimension of the system diminishes as the Rayleigh number 
decreases. 

In view of the many treatments of the BBnard problem by highly truncated modal 
models (Malkus & Veronis 1958 ; Toomre, Gough & Spiegel 1977, 1982 ; Massaguer & 
Mercader 1988 ; F. H. Busse 1989 private communication) it is of interest to compare 
the K-L eigenfunctions with those used in the modal treatments. It is therefore 
implicit to the following discussion that the eigenfunctions or modes are to be used 
to derive a dynamical system or to be used in the way that Malkus (1954a, b) 
envisioned in his pioneering papers, using the eigenfunctions of linear stability 
theory. (See also Spiegel 1962 who further suggests using the m a n  field 
eigenfunctions.) Thus, for the case of slip boundary conditions each is given by a 
product of three sinusoids. In other words, these eigenfunctions are monochromatic in 
each of three directions. As figure 9 (a) shows, the empirical eigenfunctions approach 
the modal eigenfunctions as R a  is decreased. A t  even modest values of R a ,  however, 
the empirical eigenfunctions are richer and better able to capture the steepening 
nonlinear profiles. Figure 10, which shows the temperature eigenfunctions in the 
spatial domain, indicates how, as the Rayleigh number is increased, the presence of 
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FIGURE 10. The temperature eigenfunctions in the spatial domain for various values of r .  

additional harmonics changes this profile into the double-lobed structure visible for 
instance in figures 2(a) and 2(c). There is one important additional simplifying 
feature of the empirical eigenfunctions which bears mention. In the modal approach 
one scalar function of time appears for each harmonic combination, and for each 
dependent variable. On the other hand in our procedure the eigenmodes are 
organized so that only one function of time appears for all four components ( u , I ~ ) .  
Therefore only a third of the number of dependent variables has to be considered. 

To conclude: In this paper we have studied convection under highly idealized 
conditions. A detailed analysis of the weakly turbulent flow found at relatively low 
Ra has been performed. Gross features (Nu, ReT, etc) are found to possess scalings, 
although it is known that the particular coefficients and exponents are not valid at  
large Ra. The K-L decomposition has been used to elucidate the physics of these 
complex flows in a quantitative manner. An examination of the structure of the 
empirical eigenfunctions has revealed important apparent scaling with Ra. Should 
these scalings hold for asymptotically large Ra in Rayleigh-BBnard convection with 
different boundary conditions and geometries they would provide structural details 
of the flow field without explicit simulation. 

The work reported here was supported by DARPA-URI N00014-86-K0754. The 
authors gratefully acknowledge the use of the Pittsburgh Supercomputing Center at 
which our calculations were carried out. 
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